
WireGL: A Scalable Graphics System for Clusters

Greg Humphreys� Matthew Eldridge� Ian Buck� Gordon Stoll† Matthew Everett� Pat Hanrahan�

�Stanford University †Intel Corporation

Abstract

We describe WireGL, a system for scalable interactive rendering on
a cluster of workstations. WireGL provides the familiar OpenGL
API to each node in a cluster, virtualizing multiple graphics accel-
erators into a sort-first parallel renderer with a parallel interface. We
also describe techniques for reassembling an output image from a
set of tiles distributed over a cluster. Using flexible display man-
agement, WireGL can drive a variety of output devices, from stan-
dalone displays to tiled display walls. By combining the power of
virtual graphics, the familiarity and ordered semantics of OpenGL,
and the scalability of clusters, we are able to create time-varying
visualizations that sustain rendering performance over 70,000,000
triangles per second at interactive refresh rates using 16 compute
nodes and 16 rendering nodes.

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics; I.3.4 [Computer Graphics]: Graph-
ics Utilities—Software support, Virtual device interfaces; C.2.2
[Computer-Communication Networks]: Network Protocols—
Applications; C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems—Client/Server, Distributed Applications

Keywords: Scalable Rendering, Cluster Rendering, Parallel Ren-
dering, Tiled Displays, Remote Graphics, Virtual Graphics

1 Introduction

Despite recent advances in accelerator technology, many real-time
graphics applications still cannot run at acceptable rates. As pro-
cessing and memory capabilities continue to increase, so do the
sizes of data being visualized. Today we can construct laser range
scans comprised of billions of polygons [14] and solutions to fluid
dynamics problems with several hundred million data points per
frame over thousands of frames [8, 21]. Because of memory con-
straints and lack of graphics power, visualizations of this magnitude
are difficult or impossible to perform on even the most powerful
workstations. Therefore, the need for a scalable graphics system is
clear.

The necessary components for scalable graphics on clusters of
PC’s have matured sufficiently to allow exploration of clusters as a
reasonable alternative to multiprocessor servers for high-end visu-
alization. In addition to graphics accelerators and processor power,

�fhumperjeldridgejianbuckjmeverettjhanrahang@graphics.stanford.edu
†gordon.stoll@intel.com

memory and I/O controllers have reached a level of sophistication
that permits high-speed memory, network, disk, and graphics I/O
to all occur simultaneously, and high-speed general purpose net-
works are now fast enough to handle the demanding task of routing
streams of graphics primitives.

To take advantage of these opportunities, we have designed and
implemented WireGL, a software system that unifies the render-
ing power of a collection of graphics accelerators in cluster nodes,
treating each separate framebuffer as part of a single tiled display. A
high-level block diagram of WireGL’s major components is shown
in figure 1. WireGL provides a virtualized interface to the graphics
hardware through the OpenGL API. OpenGL provides immediate-
mode semantics, so we support visualizations of time-varying data
that would be inconvenient to express with a retained-mode inter-
face or in a scene graph.

In addition, WireGL provides a parallel interface to the virtual-
ized graphics system, so each node in a parallel application can is-
sue graphics commands directly. This helps applications overcome
one of the most common performance-limiting factors in modern
graphics systems: the interface bottleneck. WireGL extends the
OpenGL API to allow the simultaneous streams of graphics com-
mands to obey ordering constraints imposed by the programmer.

Another recent development is the introduction of the Digital
Visual Interface (DVI) standard for digital scan-out of the frame-
buffer [5]. WireGL allows a flexible assignment of tiles to graphics
accelerators, recombining these tiles using DVI-based tile reassem-
bly hardware called Lightning-2 [27]. In the absence of image
composition hardware, WireGL can also perform the final image
reassembly in software, using the general purpose cluster intercon-
nect. Because of this flexible assignment of tiles to accelerators,
WireGL can deliver the combined rendering power of a cluster to
any display, be it a multi-projector wall-sized display or a single
monitor. By decoupling the number of graphics accelerators from
the number of displays and allowing a flexible partitioning of the
output image among the accelerators, image reassembly gives ap-
plications control over their graphics load balancing needs.

2 Design Issues and Related Work

Designing a parallel graphics system involves a number of tradeoffs
and choices. In this section, we present some of the most crucial
issues facing parallel graphics system designers.

2.1 Commodity Parts and Work Granularity

Parallel graphics architectures can usually be classified accord-
ing to the point in the graphics pipeline at which data are redis-
tributed [16]. This redistribution, or “sorting” step is the transition
from object parallelism to image parallelism, and the location of
this sort has significant implications for the architecture’s commu-
nication needs. When building a new hardware architecture, the
design of the communication infrastructure is flexible, and can be
engineered to meet the requirements of the system.

The SGI InfiniteReality is a sort-middle architecture which uses
bus-based broadcast communication to distribute primitives [18].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ACM SIGGRAPH 2001, 12-17 August 2001, Los Angeles, CA, USA
© 2001 ACM 1-58113-374-X/01/08...$5.00

Application0 Net

Application1 Net

Application2 Net

Application3 Net

Render0Net Gfx

Render1Net Gfx

Render2Net Gfx

Render3Net Gfx
Monitor

PixelsOpenGL

Gigabit
Network

Image
Reassembly

OpenGL

Figure 1: WireGL is comprised of application nodes, rendering nodes, and a display. In this example, each application node is per-
forming isosurface extraction in parallel and rendering its data using the OpenGL API. Each application node is responsible for the
correspondingly colored portions of the object. In the configuration shown, the display is divided into 16 tiles, each of which is man-
aged by the correspondingly shaded rendering node. These tiles are reassembled to a single monitor after they are scanned out of the
graphics accelerators.

To overcome the difficulties encountered in load-balancing image-
parallel data, it uses a fine interleaving of tiles, which works well
because of the available high-bandwidth broadcast bus. Pixel-
Planes 5 is a sort-middle architecture with large tiles, which uses
a ring network to distribute primitives from a retained-mode scene
description [7].

Because such systems do not use commodity building blocks,
they must be repeatedly redesigned or rebuilt in order to continue
to scale as faster semiconductor technology is developed. WireGL
chooses instead to unify multiple unmodified commodity graphics
accelerators housed in cluster nodes. This decision has the advan-
tage that we can upgrade the graphics cards or the network at any
time without redesigning the system.

However, the choice of cluster network will greatly affect the
overall performance and scalability of the resulting system. On
PC clusters today, high-speed networks tend to be in the 100-200
megabyte per second range. These networks are an order of magni-
tude slower than that of a high-end SMP like the SGI Origin 3000,
and yet another order of magnitude slower than custom on-chip net-
works. Although PC cluster networks are not as efficient as more
custom solutions, we can still use them to provide scalable graph-
ics performance. As high-speed commodity networks improve in
bandwidth and robustness, WireGL will be able to provide better
scalability in larger clusters, as well as higher peak performance.

Using commodity parts restricts our choices about communica-
tion and work granularity because we cannot modify the individual
graphics accelerators. As shown in figure 2, there are only two
points in the graphics pipeline where we can introduce communi-
cation: immediately after the application stage, and immediately
before the final display stage. Communication after the application
stage provides a redistribution of primitives to remote graphics ac-
celerators based on those primitives’ screen-space extent, which is
a traditional sort-first graphics architecture. By introducing com-
munication at the very end of the graphics pipeline, the final image
can be recombined from multiple framebuffers. Although WireGL
uses this stage to perform tile reassembly, communication at the
end of the pipeline can also be used for image composition-based
renderers.

For remote use of unmodified graphics components, GLR [13]
and SGI’s “Vizserver” product [26] transmit a stream of com-
pressed images from the framebuffer of a graphics supercomputer
to a low-end desktop. Image compression and streaming technol-
ogy is an attractive approach to rendering at a distance, although it
is not the best approach when the eventual display is local to the

rendering hardware.
Although WireGL is a sort-first renderer, sort-last architectures

also use a final image recombination step to produce a single image
from a fragmented framebuffer. PixelFlow uses image-composition
to drive a single display from a parallel host [17]. The Hewlett-
Packard visualize fx architecture uses a custom network to compos-
ite the results of multiple graphics accelerators [4]. Sony’s GSCube
combines the outputs of multiple Playstation2 graphics systems us-
ing a custom network, and supports both sort-first and image com-
position modes of operation. The GSCube is a particularly interest-
ing architecture because it leverages consumer technology to pro-
duce a scalable rendering technology.

To perform image reassembly on clusters, Compaq Research has
developed a system called Sepia for performing image composi-
tion using ServerNet-II networking technology [9]. Blanke et al.
describe the Metabuffer, a system for performing sort-last paral-
lel rendering on a cluster using DVI to scan out color and depth [1].
The Metabuffer is similar to Lightning-2 [27], the DVI-based image
reassembly network that we use to drive displays with our cluster.
Unlike Sepia, Lightning-2 and the Metabuffer do not require pixel
data to be transferred to the image composition network over the in-
ternal system bus, where bandwidth is often a critical resource for
parallel visualization applications.

2.2 Flexible Application Support

Many applications visualize the results of a simulation as those re-
sults are calculated. In this case, the simulation usually generates
data more slowly than the graphics system can accept it. Such
an application is referred to as compute-limited. There are many
compute-limited visualization applications that scale by generating
geometry in parallel and communicating that geometry over a net-
work to a single display server. This geometry communication is
almost always done with custom networking code, using a custom
wire protocol.

Other applications, however, make intensive use of the graphics
hardware, and a single client may effectively occupy many servers.
Such an application is called graphics-limited. For example, vol-
ume rendering with 3D textures requires high fill rates while using
few primitives. In this case, a single client may submit commands
to multiple servers and keep them all busy because the rendering
time of each individual primitive is so large.

Many applications are limited by the rate at which they can issue
geometry to the graphics system. Such an application is interface-

High Speed Cluster Interconnect

Image Composition Network

Display Display Display Display

App App App App App App App

Geom

Rast

Geom

Rast

Geom

Rast

Geom

Rast

Geom

Rast

Figure 2: Communication in WireGL. Each graphics pipeline
is a standalone graphics accelerator, so we cannot introduce
communication between its stages. Notice that the number of
application nodes, graphics pipelines, and final displays can
all be changed independently according to the application’s
needs.

limited. For example, visualizations of large geometric data sets
that have been computed off-line will tend to be interface limited.
Interface limitation is the usual argument for using display lists,
compiled vertex arrays, or other retained-mode interfaces. Another
way to alleviate the interface bottleneck is to allow multiple proces-
sors to issue graphics commands in parallel.

Finally, some applications are not limited by performance, but
they cannot effectively visualize their data due to a lack of display
resolution. Such an application is called resolution-limited. This
is typical of many scientific applications where it is important to
view all the data at a macroscopic level to get an overview of a
dataset, and also to examine microscopic details to fully understand
the data. Such an application requires the combined resolution of
multiple graphics accelerators and a high-resolution tiled display.
One example of this type of display is IBM’s Bertha, a 3840�2560
LCD display driven by four DVI inputs.

WireGL does not place any restrictions on the number of clients
or servers. For compute-limited applications it is desirable to have
more clients than servers, for graphics-limited applications it is bet-
ter to have more servers than clients, and for interface-limited appli-
cations it is most effective to have an approximately equal number
of clients and servers. WireGL also works well in a heterogeneous
environment where the servers and the clients may be running dif-
ferent operating systems on different hardware.

2.3 Programming Interface

Graphics API’s can provide a low-level resource abstraction such
as OpenGL, or a high-level abstraction such as a scene graph li-
brary. Scene graphs and other high-level interfaces are attractive
because global information can be used to automatically parallelize
rendering or perform fast culling. IRIS Performer provides parallel
traversal of a retained-mode scene graph, and can also take advan-
tage of multiple graphics pipelines in a single SMP [22]. Samanta et
al. describe a novel screen subdivision algorithm for load-balanced
rendering of a scene graph that has been replicated across the nodes
of a cluster [23, 24].

However, not all visualization tools can conveniently use a scene
graph, because their data may be unstructured and time-varying.
Another significant drawback of scene graphs is the lack of a
standardized scene graph API. Any scene graph library that uses

OpenGL for rendering can run on top of WireGL. In addition, if the
scene graph has bounding-box information about primitive groups,
that information can be provided to WireGL through the OpenGL
hinting mechanism to speed up geometry sorting.

WireGL provides the OpenGL API to each node in a cluster. The
decision to use OpenGL for specifying graphics data has several ad-
vantages over using a custom API. First, we can run an unmodified
application on a single node in our cluster without recompiling it.
If that application is graphics-limited, WireGL can provide an im-
mediate speedup. Also, if we have access to a large display wall,
we can easily interact with resolution-limited datasets that can take
advantage of the larger display area. Portions of WireGL were first
described by Humphreys et al. [10]. In that paper, we described
our techniques for sorting OpenGL streams to tile servers in order
to transparently support large displays. SGI also provides a library
called “Multipipe” that intercepts OpenGL commands and allows
unmodified applications to render across multiple graphics acceler-
ators, providing increased output resolution [25].

Many applications, however, are not graphics-limited and must
be parallelized to achieve speedup. Using WireGL, many existing
serial OpenGL applications can be parallelized with minor changes
to the inner drawing routines. In particular, applications that render
large geometric datasets using the depth buffer to resolve visibility
can simply partition their dataset across the nodes of the cluster, and
have each node render its portion as before. Because such an appli-
cation has almost no ordering requirements, achieving parallelism
is straightforward.

For applications with more complex ordering requirements,
WireGL implements extensions to OpenGL that were first pro-
posed by Igehy, Stoll and Hanrahan [12]. Their simulations showed
that scalable applications could easily be written using their exten-
sions, results that were further verified by the Pomegranate simula-
tions [6]. These extensions add traditional synchronization primi-
tives (barriers and semaphores) to the graphics library. WireGL is
the first implementation of this API in a hardware-accelerated (that
is, not simulated) architecture.

Although OpenGL is an immediate-mode API, some OpenGL
features like display lists and texture objects allow data to be stored
by the graphics system and reused. WireGL supports this by storing
those data on the server, so that users who want to replicate data
across the nodes of the cluster can do so. In addition, texture objects
can optionally be shared between multiple clients, which means that
they can be specified once at the start of the application and do not
need to be duplicated per-client. It would also be easy to allow
similar sharing of display lists between clients, although we have
not implemented this feature.

3 WireGL

A WireGL based rendering system consists of one or more clients
submitting OpenGL commands simultaneously to one or more
graphics servers, called pipeservers. The pipeservers are organized
as a sort-first parallel graphics pipeline [19], and together they ren-
der a single output image. Each pipeserver has its own graphics
accelerator and a high-speed network connecting it to all clients.
The output image is divided into tiles, which are partitioned over
the servers, each server potentially managing multiple tiles. The
assembly of the final output display from the tiles is described in
section 4. A high-level view of the system is shown in figure 1. In
that figure, each rendering node is a pipeserver. WireGL virtualizes
this architecture, providing a single conceptual graphics pipeline to
the clients.

3.1 Client Implementation

This section provides an overview of WireGL’s sort-first client im-
plementation. Interested readers should refer to Humphreys et
al. [10] for a more complete description of our sort-first system,
the protocol efficiency, and display size scalability results. The
state tracking system is described in detail in Buck, Humphreys,
and Hanrahan [3].

The WireGL client library is implemented as a replacement for
the system’s OpenGL library on Windows, Linux, or IRIX. As the
application makes calls to the OpenGL API, WireGL classifies each
call into one of three categories: geometry, state, or special. Spe-
cial commands, such as SwapBuffers, glFinish, and glClear,
require individual treatment, and will not be described here.

Geometry commands are those that legally appear between a
glBegin/glEnd pair, as well as commands that can generate frag-
ments on their own, such as glDrawPixels. These commands are
packed immediately into a global “geometry buffer”. This buffer
contains a copy of the arguments to the function, as well as an op-
code. Each opcode is encoded in a single byte, and opcodes and
data are packed into separate portions of the buffer which grow in
opposite directions. This representation allows the buffer to retain
each argument’s memory alignment, minimizes the space overhead
of the opcodes, and keeps opcodes and data contiguous in memory
so that they can be sent with a single call to the networking library.
Some commands that can appear legally between a glBegin/glEnd
pair do not generate fragments, such as glNormal3f. These com-
mands are still packed immediately into the buffer, but their state ef-
fects are also recorded. Our geometry packing code has been care-
fully engineered, and achieves a maximum packing performance of
over 20 million vertices per second (the exact computer configura-
tion used to perform these experiments is described in section 5).

As each vertex is specified, WireGL maintains an object-space
bounding box. Each incremental update to the bounding box re-
quires only six conditional moves, which can be implemented ef-
ficiently using a SIMD instruction set such as the Pentium III’s.
When geometry is sent to the servers, this bounding box is trans-
formed into screen space, and the set of overlapped screen tiles is
computed. This set is used to compute the servers that need to re-
ceive the geometry buffer. Because geometry sorting is done on
groups of primitives, the overhead of bounding box transformation
and extent intersection is amortized over many vertices.

State commands are those that directly affect the graphics state,
such as glRotatef, glBlendFunc, or glTexImage2D. The effects
of state commands are recorded into a graphics context data struc-
ture. Each element of state has n bits associated with it indicating
whether that state element is out of sync with each of n servers.
When a state command is executed, the bits are all set to 1, indi-
cating that each server might need a new copy of that element. The
OpenGL state is represented as a hierarchy, roughly mirroring the
layout described in the OpenGL specification [20]. For example,
GL LIGHT0’s diffuse color is a member of GL LIGHT0’s state, which
is an element of the lighting state. Each non-leaf node in the hier-
archy also has a vector of n synchronization bits which reflect the
logical OR of all its children. We have shown that this representa-
tion allows for very efficient computation of the difference between
two contexts [3].

Either of two circumstances can trigger the transmission of the
geometry buffer. First, if the buffer fills up, it must be flushed to
make room for subsequent commands. Second, if a state com-
mand is called while the geometry buffer is not empty, the geometry
buffer must be flushed before the state command is recorded, since
OpenGL has strict ordering semantics. However, we cannot send
the geometry buffer to the overlapped servers immediately, because
they might not have the correct OpenGL state. We must prepend a
packed representation of the application’s state before transmitting
any geometry. To do this, the client library keeps a copy of each

server’s graphics state. Using our efficient context differencing op-
eration, the commands needed to bring the server up to date with
the application are placed in that server’s outgoing network buffer.
The global geometry buffer can then be copied after the state dif-
ferences. By updating state lazily and bucketing geometry, we keep
network traffic to a minimum.

This behavior has an important implication for the granularity of
work in WireGL. Sorting individual primitives in software would be
too expensive, but grouping too many primitives may result in ex-
cessive overlap and inefficient network usage. Assuming that a state
call is made before a network buffer fills, WireGL’s work granular-
ity is that of groups of primitive blocks, or multiple glBegin/glEnd
pairs. The optimal granularity of work will be a balance between
screen-space coherency and the expense of bounding-box transfor-
mation.

It would be impractical to transform each primitive separately,
but it is not always beneficial to coalesce the maximum number of
primitive blocks, as this may result in partial network broadcasts if
the geometry is not spatially coherent and requires a large screen-
space bounding box. WireGL currently has no automatic mecha-
nism for determining the best time to bucket geometry. Applica-
tions that are aware of their bucketing needs can optionally force a
sort after a specified number of primitive blocks.

When running a parallel application, each client node behaves
in the manner described above, performing a sort-first distribution
of geometry and state to all pipeservers. This means that each
pipeserver must be prepared to handle multiple asynchronous in-
coming streams of work, each with its own associated graphics
context. OpenGL guarantees that commands from a serial context
will appear to execute in the order they are issued. When multi-
ple OpenGL contexts render to a single image, this restriction must
be relaxed because the graphics commands are being issued in par-
allel. To provide ordering control for parallel rendering, WireGL
adds barriers and semaphores to the OpenGL API, as proposed by
Igehy et al. [12].

The key advantage of these synchronization primitives is that
they do not block the application. Instead, the primitives are
encoded into the graphics stream, and their implied ordering is
obeyed by the graphics system when a context switch occurs.
A graphics context may enter a barrier at any time by calling
glBarrierExec(name). Semaphores can be acquired and released
with glSemaphoreP(name) and glSemaphoreV(name), respec-
tively. Note that these ordering commands must be broadcast, as
the same ordering restrictions must be observed by all servers, and
we wish to avoid a central oracle making global scheduling deci-
sions.

When running a parallel application, WireGL does not change
the semantics of any commands, even those with global effects.
For example, SwapBuffers marks the end of the frame and causes
a buffer swap to be executed by all servers. Therefore, it is impor-
tant that only one client execute SwapBuffers per frame. Also, a
parallel application with no intra-frame ordering dependencies will
still need two barriers per frame. To ensure that the framebuffer
clear happens before any drawing, a barrier must follow the call
to glClear. Similarly, all nodes must have completely submitted
their data for the current frame before swapping buffers, so another
barrier must precede the call to SwapBuffers. Pseudocode for this
minimal usage is shown in figure 3. More complex usage examples
can be found in Igehy’s original paper [12].

3.2 Pipeserver Implementation

A pipeserver maintains a queue of pending commands for each con-
nected client. When new commands arrive over the network, they
are placed on the end of their client’s queue. These queues are
stored in a circular “run queue” of contexts. A pipeserver continues

Display() {
if (my_thread_id == 0) // I am the master

glClear(...);
glBarrierExec(global_barrier);
DrawFrame();
glBarrierExec(global_barrier);
if (my_thread_id == 0) // I am the master

glSwapBuffers();
}

Figure 3: A minimal parallel display routine. Although the
geometry itself has no intra-frame ordering dependencies, the
imposition of frame semantics requires barriers following the
framebuffer clear and preceding the buffer swap to ensure that
the entire frame is visible.

executing a client’s commands until it runs out of work or the con-
text “blocks” on a barrier or semaphore operation. Blocked contexts
are placed on wait queues associated with the semaphore or barrier
they are waiting on. The pipeserver’s queue structures are shown in
figure 4.

Because each client has an associated graphics context, a con-
text switch must be performed each time a client’s stream blocks.
Although all modern graphics accelerators can switch contexts fast
enough to support several concurrent windows, hardware context
switching is still slow enough to discourage fine-grained sharing of
the graphics hardware. When programmatically forced to switch
contexts, the fastest modern accelerators achieve a rate of approx-
imately 12,000 times per second [3], which is slow enough that
it would limit the amount of intra-frame parallelism achievable in
WireGL.

To overcome this limitation, each pipeserver uses the same state
tracking library as the client to maintain the state of each client in
software. Just as an extremely efficient context differencing opera-
tion is the key to lazy state update between the client and the server,
it is also effective for performing context switching on the server.
Since nodes in a parallel application are collaborating to produce a
single image, they will typically have similar graphics states, and
performing context switching with our hierarchical representation
has a cost proportional to the contexts’ disparity. We have measured
this hierarchical approach as being able to switch contexts almost
200,000 times per second for contexts that differ in current color
and transformation matrix, and over 5 million times per second for
identical contexts [3].

In practice, when a context blocks, the servers often have a
choice of many potentially runnable contexts. Because a parallel
application will almost always enter a barrier immediately before
the end of the frame, it is unlikely that one context will become
starved. Therefore, in choosing a scheduling algorithm, the main
concerns are the expense of the context switch itself as well as the
amount of useful work that can be done before the next context
switch. In practice, we have found that a simple round-robin sched-
uler works well, for two reasons. First, clients participating in the
visualization of a large dataset are likely to have similar contexts,
making the expense of context switching low and uniform. Also,
since we cannot know when a stream is going to block, we can only
estimate the time to the next context switch by using the amount of
work queued for a particular context. Moreover, any large disparity
in the amount of work queued for a particular context is most likely
the result of an application-level load imbalance. This load im-
balance, not context switching overhead, will certainly be the main
performance limitation of the application. In general, because of the
low cost of context switching, and because we need to complete ex-
ecution of all contexts before the end of the frame, the pipeserver’s

scheduling algorithm is not a significant factor in an application’s
performance.

Since each pipeserver may manage more than one tile, it may
be necessary to render a block of geometry more than once. The
arrangement of tiles in the local framebuffer is described in section
4.1. The client library inserts the bounding box for each block of
geometry between the geometry itself and its preceding state com-
mands. Each server compares this bounding box against the extents
of the tiles managed by that server. For each intersection found, a
translate and scale matrix is prepended to the current transforma-
tion matrix, positioning the resulting geometry with respect to the
intersected tile’s portion of the final output. Because of the seman-
tics of OpenGL rasterization, this technique can lead to seaming
artifacts for anti-aliased or wide lines and points. Unfortunately,
not all OpenGL implementations adhere to the same rules regard-
ing clipping of wide lines and points that are larger than one pixel,
so this problem is difficult to address in general.

Calls to glViewport and glScissor are then issued to restrict
the drawing to the tile’s extent in the server’s local framebuffer, and
finally the geometry opcodes are decoded and executed. Because
the geometry block also includes vertex attribute state, the graphics
state may have changed by the end of the geometry block. However,
the client will insert commands to restore the vertex attribute state
at the beginning of the geometry buffer. Therefore, if the geometry
overlaps more than one tile, the vertex attribute state will always be
properly restored before the geometry is re-executed.

3.3 Network

We use a connection-based network abstraction to support multi-
ple network types such as TCP/IP and Myrinet. Our abstraction
provides a credit-based flow control mechanism to prevent servers
from exhausting their memory resources when they cannot keep up
with the clients. Flow control is particularly important when a con-
text is blocked, since additional commands may come in from the
client at any time even though the server cannot drain a blocked
context’s command queue.

Each server/client pair is joined by a connection. By making
buffer allocation the responsibility of the network layer, we allow a
zero-copy send. For example, the client packs OpenGL commands
directly into network buffers, and the Myrinet network layer sends
them over the network using DMA. In order for this to work, these
buffers must be pinned (locked and unpageable), which is done by
the implementation of our network abstraction for Myrinet. Receiv-
ing data on our network operates in a similar manner: the network
layer allocates (possibly pinned) buffers, allowing a zero-copy re-
ceive.

The connection is completely symmetric, which means that the
servers can return data such as the results of glReadPixels to the
clients. More importantly, WireGL supports the glFinish call so
that applications can determine when the commands they have is-
sued have been fully executed. This is available so that applica-
tions that need to synchronize their output with some external input
source can make sure the graphics system’s internal buffering is
not causing their output to lag behind the input. The user can op-
tionally enable an implicit glFinish-like synchronization on each
SwapBuffers call, which ensures that no client will ever get more
than one frame ahead of the servers.

4 Display Management

To form a seamless output image, tiles must be extracted from the
framebuffers of the pipeservers and reassembled to drive a display
device. We provide two ways to perform this reassembly. For
highest performance, the images may be reassembled after being
scanned out of the graphics accelerator. If this is not possible, the

Context
0

Context
1

Context
2

SemaP(19)

SemaV(19)

Context
0

Context
1

Context
2

SemaV(19)

Sema 19

Context
0

Context
1

Context
2

SemaV(19)

Sema 19
Context

0

Context
1

Context
2

Context
0

Context
1

Context
2

Context
0

Context
1

Context
2

A B

C ED F

Figure 4: Inside a pipeserver. Runnable contexts will be serviced in a round-robin fashion. Graphics commands being issued by a
context’s application can be appended to the end of a work queue at any time, until the client consumes its allotted server-side buffer
space. Blocks A-F show sequential timesteps as the pipeserver decodes command blocks; the currently executing context is shown with
a heavy outline. In timestep A, the pipeserver encounters the SemaP operation in context 0, which blocks the context and removes it
from the run queue. In timestep C, context 1’s SemaV command will unblock context 0 and place it back on the run queue.

tiles can be extracted from the framebuffer over the host bus inter-
face and distributed over a general purpose network, often the same
one used for distributing geometry commands.

Of course, the most straightforward way to reassemble the image
after scan-out is to allow each pipeserver to drive a single locally-
attached display. These displays can then be abutted to form a large
logical output space. This arrangement constrains each pipeserver
to manage exactly one tile that is precisely the size of its local
framebuffer. This limits WireGL’s ability to provide an application
with flexible load balancing support, but makes the final display
simple to construct.

4.1 Display Reassembly in Hardware

For our experiments with hardware display assembly, we use the
Lightning-2 system [27]. Each Lightning-2 board accepts 4 DVI
inputs from graphics accelerators and emits up to 8 DVI outputs
to displays. Multiple Lightning-2 boards can be connected in a
column via a “pixel bus” to provide more total inputs. Multiple
columns can also be chained by repeating the DVI inputs, provid-
ing more DVI outputs. An arbitrary number of accelerators and dis-
plays may be connected in such a two-dimensional mesh, and pixel
data from any accelerator may be redirected to any location on any
output display. Routing information is drawn into the framebuffer
by the application in the form of two-pixel-wide (48 bit) “strip
headers”. Each header specifies the destination of a one-pixel-high,
arbitrarily wide strip of pixels following the packet header in the
frame buffer. Lightning-2 can drive a variable number of displays,
including a single monitor.

Each input to Lightning-2 usually contributes to multiple output
displays, so Lightning-2 must observe a full output frame from each
input before it may swap, introducing exactly one frame of latency.
However, almost no currently available graphics accelerators have
external synchronization capabilities. For this reason, Lightning-2
provides a per-host back-channel using the host’s serial port. When
Lightning-2 has accepted an entire frame from all inputs, it then

notifies all input hosts simultaneously that it is ready for the next
frame. WireGL waits for this notification before executing a client’s
SwapBuffers command. Because the framebuffer scan-out hap-
pens in parallel with the next frame’s rendering, Lightning-2 will
usually be ready to accept the new frame before the host is done
rendering it, unless the application runs at a faster rate than the
eventual monitor’s refresh rate. In this case, the application will be
limited to the display’s refresh rate, which is often a desirable prop-
erty. Lightning-2 can also lock groups of outputs to swap together.
Having synchronized outputs allows Lightning-2 to drive tiled dis-
play devices such as IBM’s Bertha or a multi-projector display wall
without tearing artifacts. This in turn enables stereo rendering on
tiled displays.

Each pipeserver reserves space for its assigned tiles in its local
framebuffer in a left-to-right, top-to-bottom pattern, leaving two-
pixel-wide gaps between tiles, as shown in figure 5. A fixed pattern
of strip headers is drawn into the gaps to route the tiles to their cor-
rect destination in the display space. Because Lightning-2 routes
portions of a single horizontal scanline, non-uniform decomposi-
tions of the screen such as octrees or KD-trees can easily be accom-
plished using WireGL and Lightning-2. In general, each application
will have different tiling needs which should be determined experi-
mentally. In the future, we would like to be able to adjust the screen
tiling on the fly to meet the application’s needs automatically.

4.2 Display Reassembly in Software

Without special hardware to support image reassembly, the final
rendered image must be read out of each local framebuffer and re-
distributed over a network. This network can be the same one used
to distribute graphics commands, or it could be a separate dedicated
network for image reassembly.

To provide this functionality, WireGL has a mode called the “vi-
sualization server”. In this mode, all pipeservers read the color
contents of their managed tiles at the end of each frame. Those
images are then sent over the cluster’s interconnect to a separate

Framebuffer 1

Framebuffer 2

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 3 6

8 9 11

14 16

2 4 5

7 10 12

13 15

3 6

Reconstructed
Image

Strip
Headers

Figure 5: Allocating multiple tiles to a single accelerator with
Lightning-2. In the zoomed-in region, the two-pixel wide strip
headers are clearly visible.

compositing server for reassembly, with the same protocol used
by the clients to send geometry to the pipeservers. In effect, each
pipeserver becomes a client in a parallel image-drawing applica-
tion. The compositing server is simply another WireGL pipeserver
accepting glDrawPixels commands and parallel API synchroniza-
tion directives.

The primary drawback of this pure software approach is its po-
tential impact on performance. Pixel data must be read out of the lo-
cal framebuffer, transferred over the internal network of the cluster,
and written back to a framebuffer for display. Even with the limited
bandwidth available on modern cluster networks, image drawing
bandwidth will tend to be the limiting factor for applications that
can update at high framerates. As networks and graphics cards im-
prove and can carry more pixel data along with the geometry data,
this technique may become more attractive, but it cannot currently
sustain high frame rates, as we will show in section 5.3.

5 Performance and Scalability

The cluster used for all our experiments, called “Chromium”, con-
sists of 32 Compaq SP750 workstations. Each node has two
800 MHz Intel Pentium III Xeon processors, 256 megabytes of
RDRAM, and an NVIDIA Quadro2 Pro graphics adapter. The
SP750 uses the Intel 840 chipset to control its I/O and memory
channels, including a 64-bit, 66 MHz PCI bus, an AGP4x slot, and
dual-channel RDRAM. Each SP750 is running RedHat Linux 7.0
with NVIDIA’s 0.9-769 OpenGL drivers.

Each node has a Myricom high-speed network adapter [2] con-
nected to its PCI bus. Each network card has 2MB of local mem-
ory and a 66 MHz LANai 7 RISC processor. The cluster is fully
connected using two cascaded 16-port Myricom switches. Using
the 1.4pre37 version of the Myricom Linux drivers, we are able to
achieve a bandwidth of 101 MB/sec when communicating between
two different hosts.

When rendering locally, each node can draw 21.4 million unlit
points per second using an immediate mode interface (i.e., with-
out display lists or vertex arrays). WireGL’s maximum packing
rate (the speed at which WireGL can construct network buffers)
is 21.8 million vertices per second. When using WireGL to ren-

0 4 8 12 16
Clients=Servers

0

4

8

12

16

Sp
ee

du
p

Ideal
March
Nurbs
Hundy

Figure 6: Speedup for March, Nurbs, and Hundy using up
to 16 pipeservers. With 16 clients and 16 servers, Hundy
achieves 83% efficiency, Nurbs achieves 81% efficiency, and
March achieves 64% efficiency.

der remotely from one client to one server, we achieve a maximum
rate of 7.5 million points per second. Since each point occupies
13 bytes (three floats plus an opcode byte), this represents a net-
work bandwidth of 93 MB/sec, which is close to the 101 MB/sec
we have measured when repeatedly resending the same packet after
creation.

For our experiments with parallel applications, we partition the
cluster into 16 computation nodes and 16 visualization nodes. This
is done because our network does not perform well when senders
and receivers are running on the same host, as shown in section 5.4.

5.1 Applications

We have analyzed WireGL’s performance and scalability with three
applications:

� March is a parallel implementation of the marching cubes vol-
ume rendering algorithm [15]. A 200�200�200 volume is
divided into subvolumes of size 4�4�4 which are processed
in parallel by a number of isosurface extraction and rendering
processes. March draws independent triangles (three vertices
per triangle) with per-vertex normal information. March ex-
tracts and renders 385,492 lit triangles per frame at a rate of
374,000 tris/sec on a single node. Our graphics accelerators
can render 2.9 million lit, independent triangles with vertex
normals per second.

� Nurbs is a parallel patch evaluator that uses multiple proces-
sors to subdivide curved surfaces and tessellate them for sub-
mission to the graphics hardware. For our tests, Nurbs tessel-
lates and renders 413,100 lit, stripped triangles per frame with
vertex normals, at a rate of 467,000 tris/sec on a single node.

� Hundy is a parallel application that renders a set of unorga-
nized triangle strips. Each strip is assigned a color, but no
lighting is used. Hundy is representative of many scientific vi-
sualization applications where the data are computed off-line
and the visualization can be decomposed almost arbitrarily.

Hundy

0 4 8 12 16
Clients

0

20

40

60

80
M

T
ri

s/
se

c

March

0 4 8 12 16
Clients

0

2

4

6
Nurbs

0 4 8 12 16
Clients

0

2

4

6

Ideal
pipes=16
pipes=12
pipes=8
pipes=6
pipes=4
pipes=2
pipes=1

Figure 7: Scaling interface-limited applications. For each application, the number of clients and servers is varied. Hundy uses a tile size
of 100�100, and achieves a peak rendering performance of 71 million tris/sec at a rate of 17:7 fps. Nurbs uses a tile size of 100�100,
and achieves a peak rendering performance of 6.1 million tris/sec at a rate of 14:9 fps. March uses a tile size of 200�200, and achieves
a peak rendering performance of 4 million tris/sec at a rate of 10:6 fps. For each run, the display is a single 1600�1200 monitor. As
the number of clients surpasses the number of servers, the performance of the application once again becomes limited by the interface.

Each processor is responsible for its own portion of the scene
database. Each frame of Hundy renders 4 million triangles,
at a rate of 7.45 million tris/sec. On a single node, Hundy is
completely limited by the interface to the graphics system; it
cannot submit its data fast enough to keep the graphics system
busy.

Scaling March, Nurbs, and Hundy using a single system is a chal-
lenging problem. Although other useful applications could be writ-
ten that pose less of a challenge for WireGL, the applications we
have chosen stress our implementation. Each application has very
different load balancing behavior, requires immediate mode seman-
tics, and generates a large amount of network traffic per frame. The
speedup for these applications using 16 pipeservers is shown in fig-
ure 6.

5.2 Parallel Interface

To scale any interface-limited application, it is necessary to allow
parallel submission of graphics primitives. To demonstrate this, we
have run our applications in a number of different configurations,
shown in figure 7. In these graphs, the tile size is chosen empiri-
cally, and Lightning-2 reconstructs a final 1600� 1200 output im-
age.1 Each curve represents a different number of pipeservers, from
1 to 16. As the number of clients grows greater than the number
of servers, the performance flattens out, demonstrating that such a
configuration is once again limited by the interface.

Some of Hundy’s performance measurements show a super-
linear speedup; this is because Hundy generates a large amount of
network traffic per second. This traffic is spread uniformly over
all the servers, and when the number of servers is greater than the
number of clients, each path in the network is less fully utilized.
Essentially, this shows that Hundy’s performance is very sensitive
to the behavior of our network under high load.

WireGL’s approach provides scalable rendering to applications
with a variety of graphics performance needs. To measure scalabil-
ity with a compute-limited application, we have artificially limited
Hundy’s geometry issue rate. The number of submitting clients is
then varied while only using one pipeserver. The results of this
experiment are shown in figure 8. For each test, the application
scales excellently until it reaches the interface limit of the single
pipeserver or the size of the cluster.

1Currently, Lightning-2 supports input resolutions up to 1280�1024, so
for one pipeserver we bypass Lightning-2 and drive the display directly

0 8 16 24 32
Clients

0

2

4

6

M
T

ri
s/

se
c

rate=50k rate=200k
rate=500k rate=1.6M

Figure 8: Scaling a compute-limited application with a sin-
gle pipeserver. For each curve, Hundy’s issue rate has been
restricted. We achieve excellent scalability up to either the
pipeserver interface limit, or the full 32 nodes of our cluster.

The results shown in figures 7 and 8 demonstrate WireGL’s
flexibility. Interface-limited applications can be scaled by adding
servers and clients, while compute-limited applications can be
scaled by adding clients only.

5.3 Hardware vs. Software Image Reassembly

The overhead of performing software image reassembly can
quickly dominate the performance of an application as the output
image size grows. Each node in our cluster has a pixel read per-
formance of 28 million pixels/sec, and a pixel write performance
of 64 million pixels/sec. If we can transmit 100 MB/sec of image
data into a display node, this implies a maximum performance of
33 million pixels/sec for the visualization server. In practice, we
achieve approximately half this rate in all-to-one communication,
yielding a maximum frame rate of approximately 8 Hz at a resolu-
tion of 1600�1200.

To measure the overhead of the visualization server versus
Lightning-2, we wrote a simple serial application that calls
SwapBuffers repeatedly. The performance of this application rep-
resents an upper bound on the achievable framerate of any applica-
tion. A serial application is a fair test because, as described in sec-

320x240
1024x768

1280x1024
1600x1200

2048x1536 2560x2048 3200x2400

Output Resolution

0

20

40

60

80
M

ax
. F

ra
m

e
R

at
e

Lightning-2, displays=1
Lightning-2, displays=4
Vis. server, displays=1
Vis. server, displays=4

Figure 9: Maximum framerate achievable using Lightning-
2 or the visualization server. As the image size increases,
the expense of reading and writing blocks of pixels to the
framebuffer quickly limits the visualization server to non-
interactive framerates.

tion 3.1, only one node in a parallel application calls SwapBuffers
for each frame. In each experiment, 12 pipeservers are used. The
results are shown in figure 9. The “displays=4” curves are represen-
tative of a tiled display wall or a multi-input display such as IBM’s
Bertha.

This graph demonstrates that hardware supported image re-
assembly is necessary to maintain high framerates for most output
image sizes. Lightning-2 is able to maintain a constant refresh rate
of 90 Hz for any image size ranging from 320�240 to 3200�2400.
The visualization server provides a maximum refresh rate of 8 Hz
for a 1600�1200 image, which is approximately 46 MB/sec of net-
work traffic. This is consistent with the measured bandwidth of our
network under high fan-in congestion.

5.4 Load Balance

When evaluating a scalable graphics application, there are two
different kinds of load balancing to consider. First, there is
application-level load balance, or the amount of computation per-
formed by each client node. This type of load balancing cannot
be addressed by WireGL; it is the responsibility of the application
writer to distribute work evenly among the application nodes in the
cluster.

To evaluate application-level load balance, we measured the
speedup of our applications in a full 32-node configuration without
a network (i.e., discarding packets). In this configuration, March
achieved 85% efficiency, Nurbs 98% efficiency, and Hundy 96% ef-
ficiency. From these results, we conclude that each application has
a good distribution of work across client nodes.

The other type of load balancing is graphics work. For most
applications, the interface to a single rendering server quickly be-
comes a bottleneck, and it is necessary to distribute the rendering
work across multiple servers. However, the rendering work re-
quired to generate an output image is typically not uniformly dis-
tributed in screen space. Thus, the tiling of the output image intro-
duces a potential load imbalance, which may in turn create a load
imbalance on the network as well.

Because the triangles in our test applications are uniformly
small, the server-side load balance can be reasonably measured
by the total number of bytes sent to each server. For each appli-
cation, the total incoming traffic when using one pipeserver is a
lower bound on the total amount of network traffic for any number
of pipeservers, since adding servers will result in some redundant
communication. The overlap factor is the ratio of total traffic re-
ceived by all servers to this lower bound, and the load imbalance
is the ratio of the maximum traffic received by any server to the

average traffic. In figure 10, the height of each curve shows the
overlap factor. The error bars indicate the overlap if each server
received the maximum or minimum traffic received by any server.
The load imbalance is therefore the ratio of the maximum shown to
the observed overlap factor for that number of servers.

As expected, the choice of tile size affects the load balance and
the overlap factor. For smaller tiles, there is less variance in the to-
tal number of bytes received, resulting in a better load balance, but
the overall average data transmitted has increased due to overlap.
As the tiles get larger, the overlap is smaller, but longer error bars
indicate a poorer load balance. At a tile size of 100� 100, Nurbs
has a load imbalance of 1.53 on 16 servers, while at 32 servers the
load imbalance increases to 2.13. The load imbalance will continue
to increase as the number of servers increases. Currently, Nurbs is
sufficiently compute-limited that its load imbalance is not exposed
in the speedup curve shown in figure 6. However, as cluster size in-
creases, the increasing load imbalance will eventually limit Nurbs’
scalability. Nonetheless, WireGL provides excellent scalability up
to 16 pipeservers, which makes it a useful solution for many appli-
cations on many current cluster configurations.

To verify our assumption that the server load balance can be rea-
sonably measured by simply counting network traffic, we ran all our
measurements in a mode where the pipeservers discarded incoming
traffic rather than decoding it. The performance measurements in
this mode were almost identical to the measurements when graph-
ics commands were actually executed. This demonstrates that the
performance of interface-limited applications will largely be deter-
mined by the scalability of the network under heavy all-to-all com-
munication, and not by the execution of the graphics commands.
As networks improve, this effect will be reduced.

To fully understand our scalability results, we have measured the
achievable send and receive bandwidths of our network when per-
forming all-to-all communication. We performed this test in a par-
titioned configuration, in which sources and sinks run on different
cluster nodes, and an unpartitioned configuration where sources and
sinks run on the same cluster nodes. This test was performed with
a WireGL-independent program in which each source node sends
fixed-size network packets to all sink nodes in a round-robin pat-
tern. The results are shown in figure 11. The partitioned dataset,
shown with green crosses, achieves much higher overall perfor-
mance, and has much less transmit bandwidth variance. For ex-
ample, in an unpartitioned 18-way test, the transmit bandwidth
ranges from 26.02 to 60.75 to MB/sec, while a partitioned run us-
ing 9 clients and 9 servers had bandwidths ranging from 93.92 to
96.96 MB/sec. It is interesting to note that any individual node will
observe a very stable transmit bandwidth over the lifetime of its
run. That is, the node achieving 26 MB/sec will always achieve 26
MB/sec, although varying the number of nodes will change which
nodes perform poorly.

6 Discussion and Future Work

The real power of WireGL derives from its flexibility. Because
WireGL is based on commodity parts, it is easy and inexpensive to
build a parallel rendering system with a cluster. Although there can
be a tradeoff between using commodity parts and parallel efficiency,
the ability to reconfigure the system to meet an application’s load
balancing and resource needs is a large advantage for commodity-
based parallel rendering solutions like WireGL on small to medium-
sized clusters.

Because the techniques used to provide scalability are indepen-
dent of specific graphics adapters and networking technology, any
component in our system may be upgraded at any time to obtain
better performance. In particular, we believe that WireGL’s perfor-
mance on a 16 to 32 node cluster will improve dramatically with
the introduction of new server-area networking technology such as

Hundy

0 8 16 24 32
Servers

0

1

2

3

4

O
ve

rl
ap

Nurbs

0 8 16 24 32
Servers

0

1

2

3

4
March

0 8 16 24 32
Servers

0

1

2

3

4

tile=50x50
tile=100x100
tile=200x200
tile=400x400

Figure 10: Overlap factor and load imbalance with various tile sizes on a 1600�1200 display. The height of each curve indicates the
overlap factor, while the size of the error bars is proportional to the load imbalance. Increasing the tile size decreases the total amount
of network traffic, but at the expense of load balance. Note that with a 400� 400 tile size, only 12 total tiles are needed to cover the
display, so no more than 12 servers can contribute to the final image.

InfiniBand. To achieve peak performance today, it is necessary to
perform image reassembly after scan-out. Our Lightning-2 imple-
mentation is a large custom piece of hardware, but a smaller version
could be built very cheaply and would enable the construction of a
small, self-contained cluster that could act as a standalone graphics
subsystem for a larger cluster.

6.1 Scalability Limits

We have demonstrated that WireGL’s sort-first approach to parallel
rendering on clusters provides excellent scalability for a variety of
applications with a configuration of up to 16-pipeservers and 16-
clients. Our experiments indicate that the system would scale well
in a 32-server, 32-client setup if the cluster were bigger, or if the
network had better support for all-to-all communication. However,
there is a limit to the amount of screen-space parallelism available
at any given output size. This limit will prevent a sort-first approach
from scaling to much bigger configurations, such as clusters of 128
nodes or more. For clusters that large, the tile size becomes small
enough that it is very difficult to provide a good load balance for
any non-trivial application without introducing a prohibitively high
overlap factor. One possible solution to this problem would be to
provide dynamic screen tiling, either automatically (using frame-
coherent heuristics) or with application support. We believe alter-
nate architectures such as sort-last image composition would scale
better on larger clusters, but this will likely come at the cost of or-
dered semantics.

6.2 Texture Management

WireGL’s client implementation treats texture data as state ele-
ments, and lazily updates it to servers as needed. In the worst case,
this will result in each texture being replicated on every server node
in the system. This replication is a direct consequence of our de-
sire to use commodity graphics accelerators in our cluster; it is not
possible to introduce a stage of communication to remotely access
texture memory.

WireGL’s naive approach to parallel texture management can be
a limitation for some applications. More work needs to be done in
this area, and we are beginning to investigate new texture manage-
ment strategies. One approach being considered will leverage our
recent work in parallel texture caching [11].

0 8 16 24 32
Cluster Size

0
20
40
60
80

100

M
B

/s
ec

transmit receive

Figure 11: Transmit and receive bandwidth for Myrinet with
all-to-all communication. For each cluster size, the observed
send and receive bandwidth is plotted for all nodes. The top
dataset represents a partitioned n-to-n run, where sources and
sinks are not run on the same nodes. The bottom dataset is
an unpartitioned run of all n nodes. Partitioning the cluster
results in much higher bandwidth in general, as well as less
transmit bandwidth variance.

6.3 Latency

There are two main sources of latency in WireGL: the display re-
assembly stage, and the buffering of commands on the client. When
using Lightning-2, display reassembly will add exactly one frame
of latency. While single-frame latency is usually acceptable for in-
teractive applications, it can be a problem for certain virtual reality
applications. The overhead of using software image reassembly
will usually be much higher (on the order of 50-100 milliseconds),
although it will vary with the image size.

The latency due to command buffering will depend on the size of
the network buffers. WireGL’s default buffer size is 128KB, which
we can fill with geometry in half a millisecond, given our packing
rate of 20 MTris/sec (recall that a triangle occupies 13 bytes in our
protocol). Additional latency can occur due to network transmis-
sion, although the latency of most high-speed cluster interconnects
is less than 20 µs. Finally, since the pipeserver cannot process the
buffer until it has been completely received, we incur slightly over
one millisecond of additional latency for a 128KB buffer on a net-
work with 100 MB/sec of bandwidth.

6.4 Consistency Model

In their paper on the parallel API, Igehy, Stoll and Hanrahan defined
the concept of sequential consistency for parallel graphics systems.
The graphics system presented in their paper provides command-
sequential consistency, which means that each OpenGL command
is considered to be an atomic operation. WireGL provides a weaker
form of consistency called fragment-sequential consistency. In this
consistency model, only operations on the framebuffer are con-
sidered to be atomic. When considered in isolation, each tile in
WireGL is command-sequentially consistent, but the final image is
not. If two clients each draw a triangle without any explicit order-
ing or depth buffering, WireGL may show one or the other on top
on a per-tile basis. Igehy notes that any graphics system that sup-
ports the parallel API should provide at least fragment-sequential
consistency. Parallel applications that must always produce exactly
the same final image can achieve this in one of two ways: they
can use depth buffering, or they may express their ordering require-
ments through the use of the parallel API. WireGL provides both
of these capabilities, and we have not found any application that
both produces deterministic images and also relies on the stronger
command-sequential consistency model.

6.5 Future Work

The main future direction of the WireGL project is to add addi-
tional flexibility. The current system is suitable for many appli-
cations, but some parallel rendering tasks require a more flexible
configuration. When considering the visualization server configu-
ration of WireGL, it is clear that each node in the cluster is acting as
an OpenGL stream processor. The application is a stream source,
generating multiple streams to a number of rendering tiles. The in-
termediate pipeservers accept an incoming stream of geometry and
generate a new outgoing stream of imagery. The final compositing
pipeserver accepts multiple imagery streams and generates a final
image for display.

Because the system is closed (that is, each stream is in exactly
the same format), it is easy to imagine that other useful stream pro-
cessing configurations could be constructed. The next version of
our cluster rendering software will allow the user to describe an ar-
bitrary directed graph of graphics stream processing units. Stream
processors will be written using a standardized interface so that new
stream processors can easily be created and plugged into the cluster
rendering framework. This will provide researchers with a frame-
work for testing their own cluster rendering algorithms, be they
sort-last, sort-first, retained-mode, or extremely specialized. We
will be developing parallel applications for volume rendering, inter-
active exploration of unstructured grid data, terrain flythroughs, as
well as parallelized versions of commonly used visualization pack-
ages such as VTK, all targeted at this new common cluster render-
ing framework.

Another promising application of this new technology is trans-
parent support for CAVEs or arrays of casually aligned projectors.
A version of WireGL has already been adapted to allow unmod-
ified applications to run in a CAVE, and we have seen a demon-
stration of WireGL used for a tiled display consisting of off-axis
projectors. In addition, we have nearly completed a Microsoft Di-
rectShow backend for the Visualization Server to leverage the latest
technology in streaming video codecs for rendering at a distance.
Our latest results allow us to deliver the rendering power of our
cluster at 640�480 across a 100 megabit network, and recent codec
advances will allow us to use even slower networks for scalable re-
mote visualization. A version of the system described in this paper
has already been developed to perform sort-last parallel rendering,
using Lightning-2 to perform depth compositing on the pixel chain.

7 Conclusions

We have described WireGL, a scalable graphics system for clus-
ters of workstations. By integrating parallel submission into our
sort-first parallel renderer, we are able to achieve scalable render-
ing performance for a variety of application types. WireGL allows
users to build a graphics system capable of handling demanding
real-time, immediate mode tasks at a fraction of the cost of a tradi-
tional graphics supercomputer. Alternately, it is possible to realize
much higher performance on a cluster of workstations for the same
price.

WireGL is a more flexible graphics system than an internally
parallel standalone graphics accelerator. By leveraging commod-
ity parts, the building blocks of WireGL can be easily upgraded as
technology improves. WireGL enjoys the economies of scale of
off-the-shelf parts, providing excellent price performance. In addi-
tion, algorithm or system designers can use WireGL as a base for
experimentation with parallel rendering. WireGL’s flexibility and
scalable performance make it an attractive system for real-time ren-
dering on clusters.

Acknowledgments

The authors would like to thank the entire Lightning-2 team for
their efforts, without which much of this work would be impossi-
ble. John Gerth and Chris Niederauer were instrumental in procur-
ing, constructing, and setting up our cluster. Randy Frank, Dino
Pavlakos and Brian Wylie provided valuable guidance in designing
the cluster and selecting equipment. Nick Triantos and Andrew
Ritger provided timely updates to NVIDIA Linux drivers, often
providing top-of-tree driver builds. Bob Felderman and Glenn
Brown from Myricom were very helpful in tracking down our
Myrinet bugs (performance and otherwise). Maureen Stone and
François Guimbretière have been very patient users of WireGL as it
was maturing. This work was sponsored by the DOE VIEWS pro-
gram (contract B504665) and the DARPA DIS program (contract
DABT63-95-C-0085-P00006).

References

[1] W. Blanke, C. Bajaj, D. Fussel, and X. Zhang. The
Metabuffer: A Scalable Multiresolution Multidisplay 3-D
Graphics System Using Commodity Rendering Engines.
TR2000-16, University of Texas at Austin, February 2000.

[2] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz,
J. Seizovic, and W. Su. Myrinet: A Gigabit-per-second Local
Area Network. IEEE Micro, pages 29–36, February 1995.

[3] I. Buck, G. Humphreys, and P. Hanrahan. Tracking Graphics
State for Networked Rendering. Proceedings of
SIGGRAPH/Eurographics Workshop on Graphics Hardware,
August 2000.

[4] R. Cunniff. visualize fx Graphics Scalable Architecture.
Proceedings of Eurographics/SIGGRAPH Hot3D, pages
29–38, August 2000.

[5] Digital Visual Interface Specification. http://www.ddwg.org.

[6] M. Eldridge, H. Igehy, and P. Hanrahan. Pomegranate: A
Fully Scalable Graphics Architecture. Proceedings of
SIGGRAPH 2000, pages 443–454, July 2000.

[7] H. Fuchs, J. Poulton, J. Eyles, T. Greer, H. Goldfeather,
D. Ellsworth, S. Molnar, G. Turk, B. Tebbs, and L. Israel.

Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics
System Using Processor-Enhanced Memories. Proceedings
of SIGGRAPH 89, pages 79–88, July 1989.

[8] P. D. Heermann. Production Visualization for the ASCI One
TeraFLOPS Machine. Proceedings of IEEE Visualization,
pages 459–462, October 1998.

[9] A. Heirich and L. Moll. Scalable Distributed Visualization
Using Off-the-Shelf Components. IEEE Parallel
Visualization and Graphics Symposium, pages 55–59,
October 1999.

[10] G. Humphreys, I. Buck, M. Eldridge, and P. Hanrahan.
Distributed Rendering for Scalable Displays. IEEE
Supercomputing 2000, October 2000.

[11] H. Igehy, M. Eldridge, and P. Hanrahan. Parallel Texture
Caching. Proceedings of SIGGRAPH / Eurographics
Workshop on Graphics Hardware, pages 95–106, August
1999.

[12] H. Igehy, G. Stoll, and P. Hanrahan. The Design of a Parallel
Graphics Interface. Proceedings of SIGGRAPH 98, pages
141–150, July 1998.

[13] M. Kilgard. GLR, an OpenGL Render Server Facility.
Proceedings of X Technical Conference, February 1996.

[14] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,
L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg,
J. Shade, and D. Fulk. The Digital Michelangelo Project: 3D
Scanning of Large Statues. Proceedings of SIGGRAPH
2000, pages 131–144, July 2000.

[15] W. E. Lorensen and H. E. Cline. Marching Cubes: A High
Resolution 3D Surface Construction Algorithm. Proceedings
of SIGGRAPH 87, pages 163–169, July 1987.

[16] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A Sorting
Classification of Parallel Rendering. IEEE Computer
Graphics and Algorithms, pages 23–32, July 1994.

[17] S. Molnar, J. Eyles, and J. Poulton. PixelFlow: High-Speed
Rendering Using Image Composition. Proceedings of
SIGGRAPH 92, pages 231–240, August 1992.

[18] J. Montrym, D. Baum, D. Dignam, and C. Migdal.
InfiniteReality: A Real-Time Graphics System. Proceedings
of SIGGRAPH 97, pages 293–302, August 1997.

[19] C. Mueller. The Sort-First Rendering Architecture for
High-Performance Graphics. 1995 Symposium on Interactive
3D Graphics, pages 75–84, April 1995.

[20] OpenGL Specifications.
http://www.opengl.org/Documentation/Specs.html.

[21] W. C. Reynolds and M. Fatica. Stanford Center for
Integrated Turbulence Simulations. IEEE Computing in
Science and Engineering, pages 54–63, April 2000.

[22] J. Rohlf and J. Helman. IRIS Performer: A High
Performance Multiprocessing Toolkit for Real-Time 3D
Graphics. In Proceedings of SIGGRAPH 94, pages 381–395,
July 1994.

[23] R. Samanta, T. Funkhouser, K. Li, and J. P. Singh. Sort-First
Parallel Rendering with a Cluster of PCs. SIGGRAPH 2000
Technical Sketch, August 2000.

[24] R. Samanta, J. Zheng, T. Funkhouser, K. Li, and J. P. Singh.
Load Balancing for Multi-Projector Rendering Systems.
Proceedings of SIGGRAPH/Eurographics Workshop on
Graphics Hardware, pages 107–116, August 1999.

[25] SGI multipipe. http://www.sgi.com/software/multipipe/.

[26] SGI vizserver. http://www.sgi.com/software/vizserver/.

[27] G. Stoll, M. Eldridge, D. Patterson, A. Webb, S. Berman,
R. Levy, C. Caywood, M. Taveira, S. Hunt, and P. Hanrahan.
Lightning-2: A High-Performance Display Subsystem for
PC Clusters. Proceedings of SIGGRAPH 2001, August 2001.

